
© 2022 Arpandeep Khatua

CREATING LARGE REAL AND SYNTHETIC GRAPH DATASETS FOR
GNN APPLICATIONS

BY

ARPANDEEP KHATUA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Electrical and Computer Engineering

in the Grainger College of Engineering of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Adviser:

Professor Wen-mei Hwu

ABSTRACT

Graphs are powerful data structures that solve complex problems like recom-

mender systems, fraud detection, and influence prediction. However, graphs

alone have limited information, and mining this information to get addi-

tional insights is often challenging. Graph Neural Nets (GNNs), a class of

deep neural networks, have become a popular method to process graph data

and to solve a wide variety of emerging downstream tasks like classification,

clustering, molecular and protein structure prediction, recommendation, and

predicting user behavior in e-commerce and social networks and extract-

ing meaningful insights from unstructured data. GNNs have proliferated

these emerging applications due to their unique capabilities, like incorpo-

rating node, edge, and graph-level information into the output prediction.

However, dataset sizes have plagued the development of GNNs due to the

proprietary nature of industry data, limited size, and the non-availability of

synthetic datasets.

In this work, we introduce the Illinois Graph Benchmark (IGB), a

collection of enormous graph datasets for node classification tasks. IGB in-

corporates the most extensive real-world homogeneous graph with 260 million

nodes and more than three billion edges, including 220 million labeled nodes

for node classification tasks. Compared to the largest graph dataset pub-

licly available, IGB provides over 162× more labeled data for deep learning

practitioners and developers to create and evaluate the model with higher

accuracy. IGB captures relational information in the Microsoft Academic

Graph for the edges and nodes and the Semantic Scholar database for the

node labels. IGB also comprises synthetic and real graph datasets where

the synthetic dataset has randomly initialized node embeddings while the

real graph dataset has variable dimension node embeddings generated using

Sentence-BERT models. IGB provides a comprehensive study on the impact

of embedding generation and large labeled nodes on various GNN models.

ii

IGB is compatible with popular GNN frameworks like DGL and PyTorch Ge-

ometric and comes with predefined popular models like graph Convolutional

Neural Networks (GCN), GraphSAGE, and Graph Attention Network (GAT)

for easy model development. IGB is open-sourced, including its methodology,

and is available at https://github.com/IllinoisGraphBenchmark.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

I would like to thank Prof. Wen-mei Hwu and Dr. Vikram Sharma

Mailthody for their continued support and for making this possible. I would

also like to thank Dr. Xiang Song from Deep Graph Library and AWS for

providing us with resources to store and test our dataset. Finally, I would like

to extend my gratitude to Dr. Tengfei Ma (IBM) and Dr. Piotr Bigaj

(NVIDIA) for providing valuable insights and industry requirements.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 4
2.1 Graphs and Graph Tasks . 4
2.2 Graph Neural Networks (GNN) 5
2.3 Types of Graphs and GNNs 8
2.4 Generalizing GNN Models . 14
2.5 GNN Frameworks . 15
2.6 Graph Datasets . 15

CHAPTER 3 ILLINOIS GRAPH DATASET GENERATION 19
3.1 Challenges To Creating Graph Datasets 19
3.2 IGB Dataset Generation Goals 20
3.3 IGB Dataset Generation Methodology 21
3.4 IGB datasets . 26

CHAPTER 4 EVALUATION . 28
4.1 Setup . 29
4.2 Impact Of Labelled Nodes . 30
4.3 Impact Of Node Embedding Generation 32
4.4 Language Influence On Embeddings 37
4.5 Limitations In Existing Systems And Framework 39
4.6 IGB Dataset Model Perf Summary 41

CHAPTER 5 FUTURE WORK . 43
5.1 IGB260M Availability . 43
5.2 Heterogeneous Graph Dataset 43
5.3 Integration With Framework DataLoaders 44
5.4 MultiGPU And MultiNode Support 44
5.5 Discussion . 44

CHAPTER 6 CONCLUSION . 45

REFERENCES . 46

vi

CHAPTER 1

INTRODUCTION

Deep learning has shown to be successful in a variety of domains including

images, video, and natural language processing. The expressive power of

deep learning enables extracting meaningful insights from vast unstructured

data. While deep learning can easily capture hidden patterns in the data,

more and more applications in the enterprise domain is being represented in

the form of graphs. This is because graphs are powerful data structures and

can solve complex problems like recommender systems, fraud detection, and

influence prediction.

However, graphs alone have limited information as it models a set of objects

and their relationships. To address this, more recently, considerable research

attention on extending deep learning approaches to graph data has become

popular. In this segment, graph neural networks (GNNs), a class of deep

neural networks widely used techniques to work on graph data and solve

many emerging complex tasks.

GNNs have been shown to perform well on downstream tasks such as

recommending and predicting user behavior in e-commerce and social net-

works [1, 2, 3], predicting molecular and protein structure [4, 5], and more

recently helping in fine-tuning large language models [6]. However, existing

dataset properties used for GNN model development have plagued their de-

velopment due to the tiny nature of the real-world publicly available graph

datasets and also due to the proprietary nature of industry data.

To address the limited dataset size limitation, recent work such as OGBN

and MAG [7, 8]. have proposed open-large graph benchmark suites providing

up to 121 million nodes and 1.6 billion edge graphs. However, compared to

the industrial use cases, OGBN datasets are still small. Furthermore, most

existing datasets including OGBN datasets provide a tiny set of labeled data.

As GNN downstream tasks are often trained as supervised learning tasks,

having a large labeled data matters. However, both OGBN and MAG use

1

Arxiv [7, 8] class labels which provide only 1.4 million labeled nodes, about

1% of the overall dataset is labeled! With such small labeled data usage

during training, it becomes difficult to judge when the model fails to converge

if the model is inherently incapable of learning or we are not giving sufficient

data for the model to learn [9, 10, 11, 12, 13].

Furthermore, prior datasets lack flexibility and cannot be used to perform

an in-depth study to understand the impact of node embedding generation

on the GNN model accuracy. As embedding vectors generated from NLP

models are directly used to train GNN models, understanding the impact of

node embedding generation becomes essential at a large scale.

Besides these limitations, a consequence of GNN’s popularity has resulted

in developing optimized hardware and system solutions tailored to the GNN’s

need. However, most of these system designs (such as multi-GPU or multi-

node scaling) are still executed with tiny datasets. As the challenges exe-

cuting GNN with tiny-datasets are quite different than large datasets, it is

entirely possible to build a system that may not address a real-world problem.

To this end, this thesis proposes Illinois Graph Benchmark (IGB),

a collection of enormous graph datasets for node classification tasks. IGB

incorporates the most extensive real-world homogeneous graph with 269 mil-

lion nodes and more than three billion edges, including 220 million labeled

nodes for node classification tasks. Compared to the largest graph dataset

publicly available, IGB provides over 162× more labeled data for deep learn-

ing practitioners and developers to create and evaluate the model with higher

accuracy.

This thesis also does extensive ablation study on the impact of node em-

bedding generation on the GNN model accuracy. Through this study, we

show Roberta NLP embeddings provides better accuracy on GNN models

and larger embedding dimension assists in the GNN model accuracy. How-

ever, if the user is memory constrained, PCA dimensionality reduction can

be applied to reduce the Roberta embedding vectors from 1024-dimensions to

384-dimensions saving memory footprint by 2.67× with GNN model accuracy

loss up to 3.55%.

This dataset is a large citation network and is made for paper field of study

prediction. Each paper node is linked with a field of study. The number of

output classes of a dataset directly impacts the performance of models. In

this dataset, we provide two sets of classes for tasks of varying difficulty. The

2

first set consists of 19 classes while the second set consists of 2983 classes.

We see an average of 14.8% drop in performance from the 19 class task to

the 2983 class task in IGB-tiny and 7% in IGB-small.

Apart from these, this thesis discusses the limitations in the existing sys-

tems where we show as the IGB dataset size increases, the effective GPU

utilization is lowered, as the GPUs are waiting for the embedding gather

operation to finish. This is especially true with the IGB260M (full dataset)

which requires more than 1.2TB of memory space and requires memory map-

ping from the storage. This shows existing systems fail to adequately support

efficient training and inference operation on GNN models when the models

do not fit in the host memory of a single node.

Overall this thesis makes the following key contributions:

1. We propose a methodology to create a large graph dataset using real-

world data and provide a set of 5 homogeneous graph datasets ranging

from 100K nodes to 260M nodes. The real node embeddings are for

GNN research and synthetic version for system designing.

2. We study the impacts of various factors like a fraction of labeled data,

embedding model type and dimension, and language implications.

IGB is compatible with popular GNN frameworks like DGL and PyTorch

Geometric and comes with predefined popular models like graph Convolu-

tional Neural Networks (GCN), GraphSAGE, and Graph Attention Net-

work (GAT) for easy model development. IGB is open-sourced, including

its methodology, and is available at:

https://github.com/IllinoisGraphBenchmark.

3

CHAPTER 2

BACKGROUND

This chapter provides an in-depth overview of the materials and background

required to understand, this thesis. Initially, we will define what graphs are

and then discuss how they are useful. We will then formally define graph

neural networks and describe widely used models for various tasks. Lastly,

we will motivate why we should build extremely large graph datasets and

their benefit for the community.

2.1 Graphs and Graph Tasks

A graph is a collection of entities that have relations with each other. Graphs

are non-linear structures consisting of nodes and edges. Typically nodes

represent a person (or an animal) or event or row in a table or topic or

similar in an abstract representation of knowledge while the edge represents

how the two nodes are related and connected.

Apart from a network of relations, the graph can store additional infor-

mation that can provide useful insights to understand the behavior of inter-

actions across two entities. For example, in an author-paper citation graph,

a node represents an author and can have additional information such as

affiliation that may represent the author’s relationship with an organization.

As this additional information can easily be added to the graph, the graph

becomes a powerful data structure.

Graphs can be directed or undirected depending on the type of edge. For

instance, in the author-paper citation graph, paperA cites paperB does not

necessarily imply that the paperB should cite paperA. Thus, this graph makes

a directed graph where one direction is known. An example of an undirected

graph would be a road network where a road between two cities forms an

undirected edge between the two city nodes.

4

Figure 2.1: GNN-related publications trend ML publications in the last
decade as described by [18]

Because of their rich information, prior research has used different methods

to perform various tasks based on use cases.[14, 15, 16] Broadly, we can

classify these different graph tasks into three types: graph-level, node-level,

and edge-level. A graph-level task uses entire graph knowledge to perform a

specific task. For example, assume we want to classify an organic chemical

based on its structure. This application can be solved by using a graph-

level task operation. A node-level task uses information from a cluster of

nodes and performs a specific task. An excellent example of this operation

is influenced maximization algorithms to determine important nodes.[17] An

edge-level task uses edge information to perform a specific task. A good

example in this category would be predicting an edge between two entities

in the case of social recommender systems.

2.2 Graph Neural Networks (GNN)

Traditional algorithms have been used on graphs for over half a century now.

We have the Strongly Connected Components Algorithm and Floyd’s Cycle

Detection Algorithm which can be used for graph classification. For node

tasks like influence maximization, Page Ranking can be used to find the best

nodes from a graph. While these classical algorithms do a great job, they

are unable to learn any insights from the data. To this end, researchers have

proposed a graph neural network, a family of neural networks that operates

on graph-structured data to provide meaningful insights from unstructured

data.

5

Over just the last three years, the number of Graph Neural Network (GNN)

publications constitutes more than 10% of all Machine Learning publications

as shown in Figure 2.1 taken from [18]. This shows the popularity and

traction the community is currently experiencing.

Let’s take the house price prediction application as shown in Figure 2.2 to

understand why GNNs have been an area of interest.

Figure 2.2: Example for applications for Graph Neural networks for
predicting house price.

Figure 2.2 shows the house price prediction use case with a regular condo

and a mansion. We will also assume certain home prices as shown in Fig-

ure 2.2. To apply GNN for this task, first, we need to convert text information

such as location, price, and type of property into embeddings. These embed-

dings become input to the GNN model. For the sake of example, let’s assign

the ground truth price which can be x dollars for the condo and 10x for the

mansion.

Now let us consider two settings – a small town and a rich suburb near a

large metropolitan city. In a small town where the majority of the dwelling

are condos, using our current model of embeddings we predict the price of

the only mansion in the town to be 10x. In a rich suburb primarily with

mansions, we would predict the price of the condo to be x. However, this

is not the case. If we were to consider the surroundings, using neighboring

houses we would get the process of the mansion in the small town to be

lower than 100x whereas the price of the condo in the big city would be

higher than x. Traditional algorithms can be used for graph tasks like cycle

6

detection and influence maximization, however, they are unable to provide

additional insight for predicting prices. As GNN uses multi-layer models

where the output of each layer becomes the input to the next layer, the

GNN essentially updates each node based on the structural information of

the graph and hence the final graph can then be passed through a dense

network to make accurate location-specific predictions. This is the power of

GNNs which makes them so popular in the machine-learning community.

Figure 2.3: Graph Neural Net pipeline overview

Figure 2.3 shows a classic pipeline of the GNN model. First let’s consider

a graph G = (V , E) with N nodes vi ∈ V , edges (vi, vj) ∈ E with an ad-

jacency matrix A ∈ RN×N . The vector representation can be for nodes or

edges depending on the downstream task. We can use NLP methods to map

nodes into an N-dimensional space such that nodes that are similar would

have similar embeddings. This stage with a list of embeddings and labels

along with the adjacency matrix becomes the input of the model. Next,

we feed the adjacency matrix and embeddings into the GNN model which

transforms these embeddings using the structural information provided in

the adjacency matrix. Using neighborhood information the GNN essentially

transforms the node embedding of similar nodes closer to each other in the

N-dimensional space thus producing more expressive embeddings for down-

stream tasks. This output graph’s node embeddings can now be passed into

a dense fully connected layer to evaluate tasks like node classification. Next,

let’s investigate specific graph neural network architectures and algorithms,

particularly for node classification tasks. The input graph has node embed-

ding and we can construct an adjacency matrix for the undirected graph with

each node labeled into different classes.

7

2.3 Types of Graphs and GNNs

Graph neural network models require to be modeled differently based on the

type of the graph. Graphs can be classified into two major types:

• Homogeneous Graph: one type of node and one type of relation

expressed as an edge.

• Heterogeneous Graph: multiple types of nodes and multiple types

of relations.

The most widely used GNN models on homogeneous graphs are Graph

Convolutional Neural Network (GCN), GraphSage, and Graph Attention

Neural Network (GAT)[19, 20, 21]. Similarly, for heterogeneous graphs, we

have Relational-GCN and Relational-GAT and Heterogeneous Graph Trans-

former (HGT)[22, 23]. In the next few subsections, we will deep dive into

each of these models and understand their differences. This is important

because, at the end of the section, we will show how one single equation can

be used to represent all these models in a generalized form.

2.3.1 Homogeneous Graph Neural Network Models

1. Naive GNN model

Algorithm 1: GNN forward propagation

Data: Graph G(V , E); input features xv,∀v ∈ V ; layers L; weight
matrices Wk,∀k ∈ {1, . . . , K}; non-linearity σ

Result: Vector representations zv,∀v ∈ V
h0
v ← xv,∀v ∈ V ;

for k = 1 . . . K do
for v ∈ V do

hk
v ← σ

(∑
u∈N (v) W

khk−1
u

)
;

end

end
zv ← hK

v ,∀v ∈ V ;

A naive GNN algorithm can be implemented such that node embeddings

of each layer get updated using the neighbor’s node embedding. The update

8

function of such a naive model can be represented as

H(l+1) = σ(AH(l)W (l)) (2.1)

where H(l) ∈ RN×dim (emb) is the matrix of node embedding of layer l, W (l) is

layer-specific trainable weight matrix and σ(·) denotes the activation func-

tion.

However, this algorithm fails to provide good accuracy as it misses to

have a normalizing term. Since we keep summing the embeddings of the

neighbors to update a node embedding, the embeddings would explode after

a few layers and the model would fail to learn. To address this limitation,

prior work proposed graph convolution network (GCN).[19]

2. Graph Convolutional Neural Network (GCN)

Algorithm 2: GCN forward propagation

Data: Graph G(V , E); input features xv,∀v ∈ V ; layers L; weight
matrices Wk,∀k ∈ {1, . . . , K}; adjacency matrix ãuv ∈ A+ I;
degree diagonal matrix d̃uu =

∑
v ãuv; non-linearity σ

Result: Vector representations zv,∀v ∈ V
h0
v ← xv,∀v ∈ V ;

for k = 1 . . . K do
for v ∈ V do

n ← ãuv/
√

d̃uud̃vv;

hk
v ← σ

(∑
u∈N (v) nW

khk−1
u

)
;

end

end
zv ← hK

v ,∀v ∈ V ;

Graph Convolutional Neural Network [19] adds a normalizing term in each

layer based on the degrees of the node. This model approximates spectral

convolutions of graphs to get the update function

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (2.2)

where H(l) ∈ RN×dim (emb) is the matrix of node embedding of layer l, where

Ã is the modified adjacency matrix with self-loops on every node A+I. Here

9

A is the adjacency matrix and I is the identity matrix of the graph G and

D̃uu =
∑

v Ãuv is the degree matrix. W (l) is layer-specific trainable weight

matrix and σ(·) denotes the activation function. Using the degree of the

self-looped nodes, this update function normalizes the sum of the neighbor-

ing node embeddings and the self-loop keeps the current nodes embedding

into account. However, updating a node embedding by considering all the

neighbors is a very expensive operation. In large dense graphs with nodes

having very high degrees, this model becomes infeasible.

3. GraphSAGE

GraphSAGE [20] addresses the problems associated with the GCN model for

highly dense graphs by sampling neighboring nodes and aggregating them

instead of taking all the nodes. Given a node we can use different kinds

of sampling based on random walks, breadth-first search, depth-first search,

mean, pooling, LSTM, and gcn [20] to either sample some of the directly

neighboring nodes or nodes that are n-hops away from the current node. Af-

ter we sample neighboring nodes, we can use an aggregate function like mean,

max-pooling, or an LSTM layer. The update function can be represented as

H(l+1) = σ(Aggregate(Sampling(H(l)))W (l)) (2.3)

where various different types of aggregators and samplers can be used de-

pending on the use case.

However, these sampling methods are näive and give all the sampled neigh-

bors of a node equal importance. For example in a citation graph where a

paper node has other paper nodes which it cites as neighbors, all the cited

papers do not have equal importance to the query paper. If we randomly

select some of the neighbors or take all the neighbors and give them equal

importance we are not taking into consideration cited papers which are more

important than other cited papers.

4. Graph Attention Network (GAT)

The graph attention network [21] solves the issue of naive neighborhood

sampling where equal importance is given to every sampled neighbor by

10

Algorithm 3: GraphSAGE forward propagation

Data: Graph G(V , E); input features xv,∀v ∈ V ; layers L; weight
matrices Wk,∀k ∈ {1, . . . , K}; non-linearity σ

Result: Vector representations zv,∀v ∈ V
h0
v ← xv,∀v ∈ V ;

for k = 1 . . . K do
for v ∈ V do

hk
N (v) ← AGGREGATEk(h

k−1
u , ∀u ∈ N (v));

hk
v ← σ

(
Wk · CONCAT (hk−1

v , hk
N (v))

)
;

end
hk
v ← hk

v/∥hk
v∥2,∀v ∈ V ;

end
zv ← hK

v ,∀v ∈ V ;

using a self-attention layer in order to weigh the neighbors of a node by

importance. The model uses a shared attention mechanism a. In the initial

state, the model gives equal importance to all the neighbors of the node. For

every node, the model computes the weighted attention of all the neighbors

using

euv = a(Whv,Whu) (2.4)

where euv gives the ”importance” of node v to node u. This attention is then

normalized to get the normalized attention coefficient

αvu = softmaxu(evu). (2.5)

The final update function for each layer of the GAT with multi-headed

attention is

H(l+1) = σ(AH(l)W (l)) (2.6)

where A is a matrix of all the normalized attention coefficients.

2.3.2 Heterogeneous Graph Neural Network Models

The above GNN models are designed for homogeneous graphs, in which all

nodes and edges belong to the same types, making them infeasible to repre-

sent heterogeneous structures.[23] So while homogeneous GNN models per-

form well, it has huge limitations since practically most real-world graph

11

Algorithm 4: GAT forward propagation

Data: Graph G(V , E); input features xv,∀v ∈ V ; layers L; weight
matrices Wk,∀k ∈ {1, . . . , K}; non-linearity σ

Result: Vector representations zv,∀v ∈ V
h0
v ← xv,∀v ∈ V ;

for k = 1 . . . K do
for v ∈ V do

evN (v) = a(Wkhk−1
v ,Wkhk−1

u);
αvN (v) = softmaxu(evN (v));

hk
v ← σ

(∑
u∈N (v) αvuW

khk−1
u

)
;

end

end
zv ← hK

v ,∀v ∈ V ;

datasets are heterogeneous and we cannot apply GCN, GraphSAGE, and

GAT to them. there are primarily 2 main ways to implement GNN mod-

els on heterogeneous graphs: (1) simplify into multi-relational homogeneous

graphs, (2) use heterogeneous GNN models.

1. Relational - Graph Convolutional Neural Net (R-GCN)

Algorithm 5: RGCN forward propagation

Data: Graph G(V , E); input features xv,∀v ∈ V ; layers L; weight
matrices Wk,∀k ∈ {1, . . . , K}; adjacency matrix ãuv ∈ A+ I;
degree diagonal matrix d̃uu =

∑
v ãuv; non-linearity σ

Result: Vector representations zv,∀v ∈ V
h0
v ← xv,∀v ∈ V ;

for k = 1 . . . K do
for r = 1 . . . R do

for v ∈ V do

n ← ãuv/
√

d̃uud̃vv;

hk
v ← σ

(∑
r

∑
u∈N (v) nW

k
rh

k−1
u

)
;

end

end

end
zv ← hK

v ,∀v ∈ V ;

Heterogeneous graphs with X types of nodes and Y types of edges, can

be recursively decomposed by transforming a Nxi
− Eyj − Nxk

− Eyj − Nxi

12

edge into a new type of edge relation and remove all the nodes of type xk.

Here xi, xk ∈ X and yj ∈ Y and Nxi
is a node of type xi and Eyj is an

edge relation of the type yj. This is called meta path decomposition and the

types of edges in the graph get updated with the new edge which combines

−Eyj −Nxk
− Eyj− into −Eyj− and we can remove the Nxk

nodes. If we do

this for X − 1 times we are left with only one type of edge and Y types of

edges. These are called homogeneous multi-relational graphs.

A classic graph convolutional neural network uses a single weight matrix

Wk per layer of the model and cannot utilize the information from various

different types of relations in a multi-relational graph. In order to extract all

the information usefully, the Relational GCN [22] uses a different weight ma-

trix for each layer and each relation where Wk
r represents the weight matrix

of the kth layer and rth relation type. The update function is represented as

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)RW (l)) (2.7)

where R is the matrix representing the various relations in order to select

the relation represented weight matrix.

However, this meta-path decomposition is done by GNN researchers who

may not have domain expertise on the data in the datasets. Additionally,

since we remove all but one node, we lose a lot of the information present

in the original dataset thus leading to poorer learning. In order to overcome

these hurdles we need to use heterogeneous GNNs like Heterogeneous Graph

Transformer (HGT) [23] which uses attention similar to GAT and meta-

relations.

2. Heterogeneous Graph Transformer (HGT)

Relational Graph Convolutional Neural Network works on the principle of

implementing GCN for every type of relationship present in the heteroge-

neous graph. Additionally, the meta-path decomposition causes a loss of

information since we lose out on the embeddings of the other types of nodes

in the graph. In order to utilize all the information Heterogeneous Graph

Transformer [23] uses meta-relations. Given a query node, we take all of its

neighbors (either of the same types or different types) and normalize the em-

bedding dimension of the neighboring nodes to that of the query node. Then

13

we compute the attention coefficient of each of the neighboring nodes with

respect to the query node. Additionally, we implement a message-passing

operation from the neighboring nodes to the query node. The result from

the message passing is then multiplied by the respective attention coefficient

and summed. This final result is passed through an activation layer which

finally gives the new embedding of the query node.

2.4 Generalizing GNN Models

Comprehending all the above groups of models and their variations is a daunt-

ing task. To address this, in this thesis, we formalize the GNN models dis-

cussed above into a generalizable equation described as:

hk
v ← UPDATE(hk

v , SAMPLE(h
k−1
u)) (2.8)

Depending on the number of types of relations, and neighbor sampling we

can get the updated equations of the popular graph neural net models as

shown in Table 2.1.

Table 2.1: Popular GNN models’ update function comparison

Graph Convolutional Network hk
v ← σ

SAMPLE︷ ︸︸ ︷∑
u∈N (v)

(1/cuv)W
k︸ ︷︷ ︸

UPDATE

hk−1
u

GraphSage hk
v ← σWkAGGREGATE︸ ︷︷ ︸

UPDATE

SAMPLE︷ ︸︸ ︷
u∈N ′(v)h

k−1
u

Graph Attention Network hk
v ← σ

SAMPLE︷ ︸︸ ︷∑
u∈N (v)

αuvW
k︸ ︷︷ ︸

UPDATE

hk−1
u

Relational GCN hk
v ← σ

SAMPLE︷ ︸︸ ︷∑
r∈R

∑
u∈N r(v)

(1/cuv)Wr
k︸ ︷︷ ︸

UPDATE

hk−1
u

Note that these equations ignore the self-node consideration and the bias

term which remains the same for all models. But from the understanding

14

perspective Table 2.1 does provide a simple representation to compare various

models.

2.5 GNN Frameworks

Due to the growing popularity of graph neural network models, researchers

developed dedicated libraries on top of existing machine learning frameworks

like PyTorch [24] and Tensorflow [25]. Among them, two GNN libraries are

popular: Deep graph Library (DGL) [26] and PyTorch Geometric (PyG) [27].

Deep Graph Library (DGL) [26] is a high-performance and scalable

Python package and can be used with any major deep learning framework like

PyTorch, Apache MXNet, or Tensorflow. It provides powerful graph objects

which can be loaded into the CPU or GPU. DGL provides many state-of-

the-art GNN layers and modules for building new graph model architectures

and includes benchmarks for many standard datasets including Open Graph

Benchmark (OGB) [8].

PyTorch Geometric (PyG) [27] is a library built on PyTorch which

can be used to implement GNN models very easily. It consists of batched

data loaders, multi-GPU support, distributed learning, and benchmarks for

common datasets.

2.6 Graph Datasets

In § 2.2 we discussed the most popular supervised GNN models. Supervised

learning models require data with ground truth labels which can be used

for training and setting up test benchmarks. Furthermore, understanding

graph structure greatly helps to understand model performance. Thus, it

is essential to define the commonly used metrics while studying the graph

structure relevant to GNN. Although these metrics are comprehensive, it

provides sufficient details to help understand GNN model accuracy.

The most important metric for each dataset is the number of nodes/edges,

the number of classes, and node embedding dimensions. These metrics allow

us to determine the scale of GNN models and the expressiveness of the input

data. Average degree distribution can also be easily calculated from the

15

specified information. Apart from these metrics, homophily (β) for a graph

is a very important metric as shown by many researchers.[28]. Homophily is

defined as the fraction of neighbors for each node in a graph with the same

label as that node itself [29]. This can be represented in an equation as,

β =
1

|V |
∑
v∈V

#{nu : L(nu) == L(nv), u ∈ N (v)}
#{nu : u ∈ N (v)}

(2.9)

where V is the total number of nodes in the graph and L(x) is the label

of node x.

Apart from homophily, the number of connected components directly af-

fects the performance of GNN models on dataset [28, 30]. As this thesis

proposes a new dataset for GNN, we must compare eventually to understand

how these metrics stand across different graph datasets.

The Open Graph Benchmark (OGB) and Deep Graph Library (DGL) have

a set of graph datasets for various types of GNN tasks like node/graph clas-

sification and edge prediction. These sources provide easy access to data

loaders for these datasets and also include benchmarks and leaderboards.

Some of the popular node classification graph datasets are [31, 32, 33] listed

along with their metrics in Table 2.3.

Table 2.2: Popular node classification datasets

Dataset #Nodes #Labelled #Edges Homophily

citeseer 3, 327 1, 620 9, 228 73.91%
pubmed 19, 717 2, 100 88, 651 80.24%
cora 19, 793 19, 793 126, 842 81.00%
ogbn-arxiv 169, 343 169, 343 1, 166, 243 65.51%
ogbn-mag 1, 939, 743 736, 389 21, 111, 007 30.40%
ogbn-papers100M 111, 059, 956 1, 500, 000 1, 615, 685, 872 -
mag-240m [7] 121, 751, 666 1, 400, 000 1, 297, 748, 926 -

2.6.1 Problems With Existing Datasets

In the previous section, we summarized the most widely used graph neural

network datasets in various domains. However, most of these datasets are

tiny and are not representatives of real-world graph sizes that are used in

industry [1] as shown in Table 2.4. PinSage [1] dataset is one of the ”few”

16

Table 2.3: Popular node classification datasets metrics.

Dataset #Classes Emb Connected Comp

citeseer 6 3, 703 438
pubmed 3 500 1
cora 70 8, 710 78
ogbn-arxiv 40 128 1
ogbn-mag 349 128 3, 798
ogbn-papers100M 172 128 -
mag-240m [7] 153 768 -

Table 2.4: Largest available public dataset vs industry dataset.

Dataset Date #Nodes #Labelled #Edges Emb-dim

ogbn-papers100M [33] 2020 111 M 1.4 M 1.6 B 128
mag-240m [7] 2021 260 M 1.4 M 1.3 B 768
PinSAGE [1] 2018 3 B UNK 18 B 128− 1K

publicly disclosed datasets that have more than three billion nodes and eigh-

teen billion edges. These dataset properties were disclosed in 2018 and as

researchers, we can only assume that the dataset has grown significantly

since then. To address the limited dataset size limitation, more recent work

such as OGBN and MAG have proposed open-large graph benchmark suites

that provide up to 121 million nodes and 1.6 billion directed edge graphs.

However, compared to the industrial use cases, these datasets are still small.

This may be because generating large datasets consumes significant comput-

ing resources that are not accessible to all researchers.

Apart from limited size, the existing dataset provides a tiny set of labeled

data. As graph neural networks are trained using supervised training al-

gorithms, the number of labeled nodes present in the dataset significantly

matters for the overall accuracy of the model. Both OGBN and MAG use

Arxiv classes as labels and provide a meager 1.4 million labeled nodes. This

constitutes less than 1% of the overall dataset labeled. With such a small

number of usable nodes, we cannot accurately train and test models and it

is difficult to judge whether a model is invalid or we simply aren’t giving it

enough data for the model to learn [9, 10, 11, 12].

Besides limited labeled nodes, none of the prior work made an in-depth

study on the impact of node embedding generation for determining the GNN

17

accuracy. Given the fact that the embedding vectors directly get used during

GNN training, the quality of embedding vectors and how they are generated

are currently least studied at a large scale.

Apart from these, with increasing graph neural networks popularity, re-

searchers in the system and high-performance community are developing

hardware and system solutions assuming existing tiny datasets. As the chal-

lenges associated with tiny datasets are significantly different than working

on large datasets, it is entirely possible to build a system that may not be

able to address a real-world problem.

Without the existence of large datasets that do not fit into the host mem-

ory, it is not possible to build scale-out solutions that stress test system

parameters such as IO and communications in a distributed training setup.

For instance, if the dataset is big that does not fit in the host memory, then

one must perform an efficient graph partition. Efficient graph partition is

a non-trivial task and if the GNN model is used in inference, then the en-

tire GNN query execution time can be dominated by the graph partitioning

preprocessing step and not in the actual GNN computing. Such a level of

analysis requires access to a large dataset where researchers can evaluate the

efficiency of both preprocessing stages and the computing stage for optimized

system building.

Thus, in order to test and develop optimized systems which can utilize the

complete computation resources of a machine, and enable GNN researchers

to build novel efficient models, this thesis proposes a new homogeneous graph

dataset that will help the community in two main ways:

• Given a dataset schema, create a methodology to generate arbitrarily

sized graphs and node embeddings with a prescribed set of a number

of nodes and edges which will enable researchers to create their own

sub-datasets.

• Provide a dataset with both synthetic and real-world node embeddings

for system developers and GNN researchers to develop new efficient

performant graph neural net models that can be practical.

18

CHAPTER 3

ILLINOIS GRAPH DATASET
GENERATION

We propose Illinois Graph Benchmark (IGB) dataset to address the limita-

tions present in the existing Graph Neural Network datasets. This chapter

will cover in-depth how we generate IGB using publicly available data and

then describe various studies performed on the generated dataset that will

guide how future GNN models can be designed. We hope the IGB dataset be-

comes the frontier in designing future models and systems that meet industry

standards.

3.1 Challenges To Creating Graph Datasets

Creating large GNN datasets although looks easy but is a non-trivial task.

We must address the following major challenges while creating a large GNN

dataset:

1. The dataset should comply with open-source bylaws and the relation

and properties associated with the dataset should be from the real

world. This poses a unique challenge as not all data in the public

domain are open to modifying or generating derivative products. Even

if such data is available, most of the open-source datasets are small.

2. Data preparation from raw text files looks trivial when the dataset is

small. However, with large datasets, the dataset preparation consumes

significant resources.

3. Most GNN models use supervised learning methods to learn the tasks.

As supervised learning fundamentally depends on the amount of labeled

data, it is required to have very large ground-truth (GT) labels gener-

ated by humans from specific domains. Generating labels for millions

of nodes needs to be automated and is infeasible to perform manually.

19

4. A single dataset might not have all the information we want. If we

want to merge multiple datasets we need to do so carefully in order to

preserve the accuracy of information.

3.2 IGB Dataset Generation Goals

As IGB creates a new large-scale dataset for GNN models, it brings unique

opportunities that can assist in further understanding the impact of dataset

properties on the accuracy of the GNN models. Moreover, it must also adhere

to the following set of goals.

1. IGB dataset generation process must address the challenges described

in § 3.1.

2. IGB dataset generation must study the impact of dataset size and how

it affects the training efficiency with respect to accuracy.

3. As IGB provides a massively large number of human-annotated labeled

data for GNN-supervised training, IGB must study its impact on var-

ious model accuracy.

4. Impact of node embedding must be studied in-depth before selecting

the right embedding model generation scheme. Embedding generation

depends on the type of model used, the size of the embedding vector,

and the language it was used to train the model. The existing datasets

do not give us an opportunity to explore these questions.

5. Impact of the number of classes to predict in a multi-class classification

task.

6. IGB must describe the current limitations in existing system hardware

as it stresses out the entire system stack while performing GNN training

on state-of-the-art systems.

20

3.3 IGB Dataset Generation Methodology

3.3.1 Selecting Real World Database

In order to create a real-world graph dataset, we need to curate real-world

data. Although there are several real-world graph data publicly available [34,

35, 36, 8, 37], most of the graph datasets either are small or do not have all

the required information that meets IGB generation goals. Among many,

Microsoft Academic Graph (MAG) and SemanticScholar Corpus are the two

publicly available raw data that meet our criteria. We start by looking into

the Microsoft Academic Graph (MAG). The MAG dataset has a lot of rela-

tions and information about the different types of data points. These data

points can be paper and author tables in addition to various other tables pro-

viding information about the paper citation, authorship, affiliation, field of

study, and many more. This enables building complex very large knowledge

graphs and appending them with property information specific to the node.

The SemanticScholar dataset also provides a similar set of functionalities but

is slightly smaller than the MAG dataset.

Figure 3.1: MAG papers table and metrics

The MAG dataset has over 260M papers and over 1.9B undirected edges

representing paper-to-paper citations. The paper table has information about

the title, published date, author, citation, and conferences/journals. The pa-

per citations are stored in a COO format where the first paper ID cites the

paired paper ID.

The author table has a large number of authors who have published papers

21

Figure 3.2: MAG papers relations table and metrics

Figure 3.3: MAG authors table and metrics

in the last few decades. The author table includes data about their names,

affiliations, and papers they wrote.

3.3.2 Graph Dataset Schema

The next step in creating a graph database is to decide the schema – the type

of graph, number of nodes and edges, types of nodes and edges, and number of

relations. Graphs can be broadly divided into homogeneous or heterogeneous

depending on the number of types of nodes present in the graph. Within a

homogeneous graph if we have multiple types of edges between the nodes it

is called a multi-relational graph. IGB design goal requires the generation

of both homogeneous and heterogeneous graphs. However, for the thesis, we

will limit our discussion to the generation of homogeneous graphs.

22

Figure 3.4: MAG extra information table and metrics

3.3.3 IGB Downstream Tasks

The IGB dataset collections are for multi-class classification tasks on 3 dif-

ferent levels of an increasing number of classes − 19, 292, 2983. The input

to the GNN model is the graph dataset with paper nodes initialized with

1024− dim embeddings and the expected output task is to predict the topic

of the paper. This dataset can also be utilized for edge prediction tasks which

can be used for citation recommendation.

3.3.4 IGB Ground-Truth Label Generation

IGB implements node-level downstream tasks where it provides true node la-

bels with multiple classes for multi-class node classification tasks. The goal

is to predict the paper topics for a paper node given the node embedding and

the citation graph. However, finding a collection of large real-world ground

truth labels in the real world is a pressing challenge as it is impossible to

manually annotate them. For instance, the current largest graph datasets

MAG240M and ogbn-papers100M use arXiv labels and have up to 1.4M la-

beled nodes (0.5% of the dataset is labeled). These 1.4M paper nodes are

labeled with 172 paper topics which are broadly divided into 8 subject ar-

eas. Although this looks sufficient, through our discussions with industry

partners, we learned that in practice there are tens to thousands of distinct

classes required to be predicted for a given GNN model.

IGB uses the MAG dataset [7] and Semantic Scholar [36] dataset in order

to annotate over 220M paper nodes into three distinct levels of classes for

23

increasing classification challenges which cover 100% of the nodes for IGB

datasets up to large and over 84% coverage for IGB260M (full). We provide

19 for distinct subject areas for the first level of the classification task. In

order to increase the difficulty and resemble real-world scenarios we further

provide tasks with 292 and 2983 paper topics. Semantic Scholar database

includes a reverse mapping for MAG paper ids which makes it simple to

connect the datasets in order to maximize the number of labeled nodes we

can provide. Thus, the 19 class task is curated by combining classes from

MAG and Semantic Scholar and mapping them into a common structure.

The 292 class task is extracted from only the MAG dataset. Semantic Scholar

also provides multiple labels for each paper. The 2983 class task is created

by bucketing all papers which have the same set of paper topics from the set

of labels provided by Semantic Scholar. Overall the lower number of class

tasks is meant for developing and testing models while the high number of

classes is to stress test models and push for more robust GNN models which

can be implemented on noisy real-world data.

Figure 3.5: Semantic Scholar paper labels

Thus, IGN enables users to make datasets in a methodological manner −
giving users more options to choose the difficulty of problem setup for testing

their models.

3.3.5 IGB Embedding Generation

GNNs operate based on the structure of the graph it doesn’t have any infor-

mation about the node itself. In order to give the GNN model information

about the node we need to generate an embedding. In the past text, embed-

dings were generated using binary values and word dictionaries. Each text

was given an embedding of dimension equal to the size of the dictionary and

if a particular word appeared in the text that index was assigned 1 otherwise

24

Figure 3.6: MAG Field of Study paper labels

0. For Citeseer and Cora, each publication in the dataset is described by a

0/1-valued word vector indicating the absence/presence of the corresponding

word from the dictionary. The dictionary consists of 3703 unique words in

citeseer. [32]. However, with the introduction of word2vec embeddings and

more recently deep learning-based word and text embeddings, GNNs are be-

ing initialized with node embeddings generated using foundational language

models. Thus, for our datasets, we need to create node embedding. To do

this, we use the paper titles and abstracts and pass them through a sentence-

BERT [38] model and generate a 1024− dim node embedding.

Figure 3.7: Creating on node embedding using Sentence BERT

In the past few years BERT [39] and RoBERTa [40] have been used

to generate embeddings, however, they have a huge computational over-

head. Sentence-BERT is based on a Siamese net which can derive semanti-

cally meaningful sentence embeddings [38] by modifying a pre-trained BERT

25

model. Additionally, it provides accuracy similar to BERT but reduces run-

time to a few seconds. This makes it an obvious choice for us to use to

generate node embeddings.

Unlike general language model-based embeddings, it is entirely possible

to create domain-specific embeddings. One can use the state-of-the-art emb

model SPECTER [41], an embedding model created for scientific text data.

SPECTER uses SciBERT [42], a variant of the BERT model. In order to

optimize the embeddings for scientific text SPECTER uses positive and neg-

ative samples of papers from the Semantic Scholar citation dataset [36].

SPECTER achieves a 1.5% gain in F1 score compared to Sentence-BERT

tested on papers from the MAG dataset.

However, for the IGB dataset, we particulate picked Sentence-BERT em-

bedding trained on web data. This enables validation of the GNN model

using generalized text embedding from foundation language models and not

from fine-tuned scientific text using the citation networks. The reasoning

behind this is that we want to benchmark the GNN model’s ability to ex-

tract structural information on a dataset initialized with embeddings that

have no inherent structural information beforehand. Moreover, in a practical

industrial setup, fine-tuning the model for each domain-specific task is a very

time-consume process. Thus, foundational model language embeddings play

a more important role.

3.4 IGB datasets

The IGB benchmark provides a collection consisting of 5 datasets of varying

sizes. Each dataset is an order of magnitude larger than the previous one

and is meant for unique use cases.

Table 3.1: IGB dataset collection metrics

Dataset #Nodes % Labeled #Edges Degree

IGB-tiny 100, 000 100 547, 416 234/1/5.47
IGB-small 1, 000, 000 100 12, 070, 502 4, 292/1/12.07
IGB-medium 10, 000, 000 100 120, 077, 694 22, 315/1/12.00
IGB-large 100, 000, 000 100 1, 223, 571, 364 73, 248/1/12.20
IGB260M 269, 346, 174 84.3 3, 995, 777, 033 277, 194/1/14.90

26

Table 3.2: IGB dataset collection metrics continued

Dataset Homophily Emb-dim #Classes CC Storage

IGB-tiny 56.79% 1, 024 19/2983 10, 943 400 MB
IGB-small 47.75% 1, 024 19/2983 677, 466 4.6 GB
IGB-medium 59.93% 1, 024 19/2983 111, 011 40.8 GB
IGB-large 58.27% 1, 024 19/2983 - 400 GB
IGB260M 51.79% 1, 024 19/2983 - 1.15 TB

The tiny dataset is provided for dry running and sanity testing of graph

neural net models and does not require many resources or storage. It can be

easily run on a laptop or edge device and is representative of larger datasets.

IGB-small and IGB-medium provide excellent baseline models with minimal

training and can be trained with high utilization of a small GPU or powerful

CPU. This is ideal for training and testing new GNNmodels while developing.

IGB-large can be trained on a high-end GPU (40GB A100 NVIDIA) with

excellent GPU utilization and is ideal for training robust GNN models and

can be used for testing by system designers. IGB260M (full) is a massive

dataset for GNN developers to build practical models and is also meant to

be used for stress testing systems and building efficient distributed training

systems for GNN.

Each of the datasets is initialized with 1024−dim node embeddings and has

three different sets of output classes of increasing difficulty in order to stress

test GNN models and optimize model development. The dataset is randomly

split with 60% for training, 20% for validations, and 20% for testing. The

dataset provides the year of publication meta dataset for every paper node

in case users want to specify a splitting rule. Additionally, the dataset has

an inherent skew which is characteristic of real-world data. The idea of

preserving this skew in all the sizes of the IGB dataset collection is to make

them reflect true real-world data.

27

CHAPTER 4

EVALUATION

IGB provides five different sizes of datasets for model and system developers

to work with. We evaluated IGB datasets on several different types of GNN

models using the system described in § 4.1. The high-level summary across

GCN, GraphSage, and GAT models with a different number of output classes

is provided in Table 4.1.

Apart from model accuracy for the IGB dataset, the thesis goal is also to

study the impact of the dataset generation on GNN model accuracy. Our

evaluation shows:

• Labeled data provides significant improvement in performance i.e., 150×
more labeled data provides increases the node classification accuracy

by up to 10%.

• Using an NLP model for initializing node embeddings is crucial as it

provides over 40% increase in GNN performance compared to randomly

initialized embeddings.

• It is feasible to use dimensionality reduction algorithms like PCA to

reduce the dimension of the node embedding by more than half and

yet provide similar performance on the IGB dataset.

• GNNs can play an important role in multilingual text embedding fine-

tuning due to their reliance on structure and not the language.

IGB-tiny t-SNE view: t-Distributed Stochastic Neighbor Embedding

t-SNE [43] is an unsupervised method that can be used to perform dimen-

sionality reduction by maximizing variance and preserving local similarities.

This allows it to cluster similar embeddings closer while pushing dissimilar

embeddings away providing a better visualization. We created a t-SNE rep-

resentation of IGB-tiny to illustrate the graph is a 2D space with similar

nodes clustered together.

28

Figure 4.1: t-SNE view of IGB-tiny

Table 4.1: IGB Datasets homogeneous benchmark using same model size all
the datasets (* trained for 3 epochs)

Model GCN SAGE GAT
Dataset 19 acc 2983 acc 19 acc 2983 acc 19 acc 2983 acc

IGB-tiny 68.06 53.13 71.87 59.49 68.92 51.74
IGB-small 70.46 63.28 75.49 68.70 70.93 63.70
IGB-medium* 70.63 62.70 70.35 62.55 70.06 61.81
IGB-large* 50.29 − 64.89 − 64.59 −
IGB260M* 48.59 − 54.95 − 55.51 −

4.1 Setup

All the models were trained on a system with 255 AMD EPYC 7702 64-

Core Processors and an NVIDIA A100-PCIE-40GB GPU. We used a docker

container for training and testing and the image used is nvcr.io/nvidia/

pytorch:22.08-py3. All the datasets were run on batched GCN, SAGE, and

GAT models implemented using DGL primitives. Along with the dataset,

we provide a DGL and PyG data loader1. We used a batch size of 10, 240

in order to maximize GPU SM utilization and shared memory. All the runs

use a 0.01 learning rate. IGB-tiny and IGB-small datasets are run on models

with 2 layers with a hidden dimension of 128 and for GAT there are 4 heads.

All the other models have 2 layers with a hidden dimension of 16 and 2 heads

1PyG data loader will be released soon

29

Table 4.2: System specification

Configuration Specification

System Supermicro AS-4124GS-TNR
CPUs 2× AMD EPYC 7702 64-Core Processors
DRAM 1TB Micron DDR4-3200
GPU NVIDIA A100-80GB PCIe
SSDs 8× Samsung 980pro
Operating System Ubuntu 20.04 LTS
CUDA Driver and
Tools

NVIDIA Driver 470.82, CUDA Toolkit
11.4

in the GAT model. IGB-tiny and IGB-small are trained for 15 epochs while

the larger models are trained for 3 epochs.

4.2 Impact Of Labelled Nodes

5
0
.
1
2

5
1
.
6
8

5
3
.
1

5
3
.
2
8

6
8
.
9
2

5
1
.
4
6

5
2
.
7
7

5
3
.
1
6

5
3
.
9
1

6
8
.
0
6

5
3
.
9
7

5
5
.
2
1

5
5
.
7
9

5
6
.
7
6

7
1
.
8
7

30

35

40

45

50

55

60

65

70

75

1|150 1|100 1|50 1|10 FULL

G
N

N
 A

CC
U

RA
CY

FRACTION OF DATASET LABELLED

gat gcn graph-sage

Figure 4.2: Comparison of GNN model performance on IGB-tiny dataset
with different fractions of labeled nodes to understand the effect of labeled
nodes.

We motivated the importance of labeled data in §2.6.1. In this section, we

will evaluate the impact of labeled data on IGB datasets. To perform this

experiment, we created several sub-dataset with different fractions of labeled

data. GCN, Graph-SAGE, and GAT were then trained and evaluated on

30

these various sub-datasets. Our expectation is the accuracy of the models

should improve as we add more labeled data as the tasks are performed

using supervised learning techniques. Figure 4.2 shows the improvement in

average GNN model accuracy observed when we vary the number of labeled

nodes from 1 to 1/150. As expected, across all models, we observe significant

performance improvement (10%) as we add more labeled data.

Table 4.3: GNN performance compared with the fraction of dataset labeled

Model Fraction GCN SAGE GAT
Dataset Labeled Val Test Val Test Val Test

IGB-tiny 1/10 53.88 53.91 57.03 56.76 52.82 53.28
19 classes 1/50 52.94 53.16 55.63 55.79 52.92 53.10

1/100 52.19 52.77 55.14 55.21 51.26 51.68
1/150 51.15 51.46 53.71 53.97 49.68 50.12

IGB-small 1/10 68.68 69.25 72.40 72.89 67.91 68.76
19 classes 1/50 62.55 62.80 65.77 65.88 57.63 57.60

1/100 56.10 56.60 55.35 57.00 51.80 55.25
1/150 55.51 57.80 56.11 56.30 53.64 52.85

To validate the experimental results that can be extrapolated to the larger

IGB datasets, we created two sub-variant of the dataset for IGB-small and

IGB-medium and varied the number of labeled nodes from 1 to 1/150. We

evaluated the performance improvement using the 3 models and then took

the average. From Table 4.4 we see that there is a steady decrease in the

difference between the accuracy of the full dataset and that of the 1/250

fraction. This is because, as the dataset increases in size, the models can

learn more from the structure and depends less on the labeled nodes. As

expected, a similar performance improvement was noted. This shows that

we can theoretically extrapolate this difference to the large and full model

as well, showing a significant bump in test accuracy over datasets with much

less labeled data. Additionally, with more labeled data we can finally use

the whole dataset for training which allows us to work on the GNN training

speed and test architectural inefficiencies.

31

Table 4.4: Node label experiment on various IGB datasets taking an
average of GCN, SAGE, and GAT to compare the accuracy difference
between the full labeled dataset and 1/150 of the dataset labeled.

Dataset Full-labelled acc 1/150 labelled acc Difference

IGB-tiny 69.62% 51.85% 17.77
IGB-small 72.28% 55.65% 16.63
IGB-medium* 70.34% 58.15% 12.18

4.3 Impact Of Node Embedding Generation

We will study the effect of node embeddings on GNN accuracy and the impact

of embedding dimension, generation model, and language in this section.

4.3.1 Importance Of Embeddings From Large Language
Models

25.85

26.22

28.56

69.62

72.29

70.34

0 10 20 30 40 50 60 70 80

IG
B-
tin

y
IG
B-
sm

al
l

IG
B-
m
ed

iu
m
*

AVERAGE GNN ACCURACY

G
N

N
 D

AT
AS

ET
 S

IZ
E

NLP node embeddings Random embeddings

Figure 4.3: Random vs 1024-dim NLP embeddings affecting average GNN
performance in IGB-tiny, IGB-small, and IGB-medium.

In order to provide the GNN model with information about the node itself,

we need to initialize each node with representative embeddings. Of course,

the question arises what happens if we initialize the embeddings with random

vectors. Our evaluation shows that the difference in GNN performance with

random embeddings and NLP-based embeddings is very stark.

32

Table 4.5: GNN performance compared with random embeddings vs
1024− dim embeddings

Model GCN SAGE GAT
Dataset random real random real random real

IGB-tiny

19 classes 25.09 68.06 25.37 71.87 27.10 68.92
2983 classes 23.49 53.13 22.29 59.49 23.29 51.74

IGB-small

19 classes 26.02 70.46 25.17 75.49 27.46 70.93
2983 classes 23.88 63.28 23.38 68.70 24.88 63.70

We ran IGB-tiny, small, and medium with roberta (1024-dim) embeddings

and random embeddings to compare the difference in test accuracy. Using the

large language models for embeddings increases the model performance by

more than 3× in the IGB-tiny, IGB-small, and IGB-medium. Extrapolating

this, we can predict that this holds for IGB-large and IGB260M too since

without the NLP node embeddings the GNN doesn’t have any information

about the node so it can only learn from the graph structure.

4.3.2 Selecting Right Embedding Model

In order to understand the effect of various large generic language models, we

evaluated GNN model accuracy with a few widely used sentence transformer

models from the Huggingface library [44]. Table 4.6 summarizes the reported

average performance on NLP tasks and model size of generic language models

along with their embedding dimensions.

Table 4.6: Sentence Transformer Models from the Huggingface Library

Dataset Emb dim Avg. perf Model size

all-MiniLM-L6-v2 384 58.80% 80 MB
distiluse-base-multilingual 512 45.59% 480 MB
all-mpnet-base-v2 768 63.30% 420 MB
all-roberta-large-v1 1, 024 61.64% 1, 360 MB

Figure 4.4 summarizes the impact of different language models on the

GNN accuracy by taking the average of GCN, GraphSAGE, and GAT to get

model-independent trends. As the embedding dimensions are different, it is

33

6
6
.
3
3

6
4
.
5
1

6
7
.
7
9

6
8
.
0
6

6
7
.
6

6
5
.
0
9

6
8
.
2
6

6
8
.
9
27
0
.
5
7

6
8
.
0
3

7
1
.
2
4

7
1
.
8
7

6
8
.
1
7

6
5
.
8
8

6
9
.
1

6
9
.
6
2

58

60

62

64

66

68

70

72

74

MINILM DISTILUSE MPNET ROBERTA

G
N

N
 A

CC
U

RA
CY

NLP MODEL USED FOR EMBEDDING GENERATION

gcn gat graph-sage average

Figure 4.4: GNN accuracy on IGB-tiny using different NLP embedding
models for initializing node embeddings.

impossible to conclude if such a large performance range is due to the model’s

accuracy or embedding dimensions. However, what can be concluded is that

the NLP model in itself has a direct impact on the GNN performance. In

the next experiment, we will isolate the impact of the model by normalizing

the embedding dimensions using the dimensionality reduction technique. As

the embedding dimensions are not the same, it is hard to determine if the

model played the role or if the additional information learned by the model

by having a larger footprint helped in increasing the accuracy.

4.3.3 Impact Of Embedding Dimension

The previous experiment compared different-sized embeddings from various

NLP models. To understand how the models affect the performance we must

normalize the embedding dimensions. For models with higher dimensions we

used the dimensionality reduction technique, principle decomposition anal-

ysis (PCA) [45], and normalized the embedding dimensions. We used the

GPU implementation of PCA from the cuML API library [46].

We ran IGB-tiny with all the possible combinations of dimensions using

GCN, GraphSAGE, and GAT GNNs models, and the results are described

in Table 4.7. Reducing the dimensions of embeddings using PCA impacts

34

6
8
.
1
7

6
2
.
0
7

6
5
.
6

6
5
.
0
9

6
5
.
8
8

6
6
.
1
8

6
5
.
9
7

6
9
.
1

6
6
.
3
6
6
9
.
6
2

55

57

59

61

63

65

67

69

71

73

75

MINILM DISTILUSE MPNET ROBERTA

G
N

N
 A

CC
U

RA
CY

NLP MODEL USED FOR EMBEDDING GENERATION

384-dim 512-dim 768-dim 1024-dim

Figure 4.5: Average GNN performance on IGB-tiny based on NLP
embedding model after PCA.

Table 4.7: GNN performance on IGB-tiny NLP model after PCA dim
reduction. The x rows represent the original NLP model dimension and the
columns represent the final emb dimension after PCA reduction.

GCN SAGE GAT
Dimension 384 512 768 1024 384 512 768 1024 384 512 768 1024

miniLM-384 66.33 - - - 70.57 - - - 67.60 - - -
DISTILUSE-512 58.21 64.51 - - 64.98 68.03 - - 63.03 65.09 - -
MPNET-768 62.30 63.10 67.79 - 68.54 69.27 71.24 - 65.95 66.17 68.26 -
ROBERTA-1024 60.90 62.52 62.94 68.06 68.73 69.48 70.00 71.87 65.64 65.92 66.15 68.92

the GNN model accuracy across all GNN models. This is nothing surprising

as the PCA is a lossy operation. For Roberta embeddings, when the embed-

ding dimensions are reduced from 1024 to 384, we observe 3.55%, 1.47%, and

0.58% reduction in accuracy for GCN, GraphSAGE, and GAT GNN models.

A similar observation is noted in the case of mpnet embeddings and oth-

ers. This is interesting because from the data we note that the GAT GNN

model is more resilient to embedding dimension reductions compared to the

GraphSAGE and GCN models.

Moreover, for Roberta embeddings, 2.6× reduction in embedding dimen-

sion only resulted in up to 3.55% accuracy loss in the GNN models on the

IGB-tiny datasets. This is important as 1024-dim embeddings consume mas-

sive memory capacity for storing embeddings vectors during training and in-

ference operations and 2.6× is a significant cost saving especially for IGB260

full. Obviously, the next question is, can we save more memory by further

35

reducing the dimensionality. To understand this, we reduced the embedding

dimensions from 1023 to 8 using PCA and evaluate different GNN model

accuracies for Roberta embedding vectors as shown in Figure 4.6.

Reducing the embedding dimension by 2× results in 1.03%, 0.72%, and

0.30% reduction in accuracy for GCN, GraphSAGE, and GAT GNN models.

Projecting this to IGB260M dataset translates to about a 50% reduction

in memory space required for running these models. Further reducing the

embedding dimensions deteriorates the performance of GNN models. With

embedding dimensions of 128 and 8, the accuracy drops by 4.1%, 3.39%,

2.17% and 13.41%, 12.24%, 9.35% for GCN, GraphSAGE, and GAT GNN

models respectively.

45

50

55

60

65

70

75

1023 768 512 384 256 128 64 32 16 8

G
N

N
 A

CC
U

RA
CY

EMBEDDING DIMENSION (PCA DIMENSION REDUCTION)

gcn graph-sage gat Average

Figure 4.6: GNN performance on Roberta embeddings from 1024-dim to
8-dim across all GNN models

Figure 4.5 captures the average of three GNN model accuracy for the IGB-

tiny dataset for all NLP embeddings when their embedding dimensions are

normalized. The mpnet and Roberta outperform the other miniLM and dis-

tiluse models across all GNN models. This is because both these NLP models

used for embedding generations inherently are better at language modeling

tasks (see Table 4.6 and thus their respective accuracy improvements also get

reflected in the GNN model’s accuracy. This is good as it aligns with the in-

dustrial trend towards building more accurate generic foundational language

models which can further improve the GNN model performance.

36

Based on this analysis, by default, IGB provides 1024-dim Roberta em-

beddings vectors which can be converted using the provided toolchains in

the IGB dataset. Interested users who want to generate embeddings using

other models, can easily generate them by using the tools provided in our

open-source codebase [47].

4.4 Language Influence On Embeddings

Often large language models (LLMs) are trained on web corpus data [48, 40].

The majority of the data used for training NLP models are in the English

language and thus the embedding generated can have a bias towards a specific

language. The MAG dataset used to generate the IGB dataset comprises

more than 80 languages of papers. More than 12 languages have over 1M

nodes and 50% of nodes have English papers in the MAG dataset as shown in

Figure 4.7. Thus, it is of utmost importance to understand if the language in

which LLMs are trained matters on the overall accuracy of the GNN models.

1
1
1
5
4
4
8
1
9

1
4
5
6
1
0
0
7

7
1
2
0
4
2
2

5
9
1
4
0
5
6

4
6
8
5
9
4
9

4
0
7
5
2
4
1

2
6
3
2
9
4
5

2
1
2
3
2
8
1

2
0
1
7
6
6
5

1
6
7
3
9
5
0

1
0
8
9
7
0
5

1
0
3
1
2
9
5

English Japanese Spanish Chinese Korean French German Russian PortugueseIndonesian Polish Italian

#P
AP

ER
 N

O
DE

S

LANGUAGE

Figure 4.7: Paper language distribution in the MAG database

Our goal is to determine if the language used in the dataset to train the

NLP model makes any difference in the GNN performance. To do this, we

must use the NLP model trained exclusively on a specific language. However,

finding a pre-trained large language model exclusively on a specific language

37

is nearly impossible as of today and thus, we ended up using multilingual lan-

guage models that include or exclude specific language for this experiment.

We picked three languages Japanese, Spanish and French in our study and

created sub-datasets by generating node embeddings with the pre-trained

multilingual models from the HuggingFace repository [44]. The models used

are

1. paraphrase-MiniLM-L12-v2 : (384-eng) Trained on only English with

384 embedding dimensions.

2. paraphrase-multilingual-MiniLM-L12-v2 : (384-all) Multilingual ver-

sion of paraphrase-MiniLM-L12-v2, trained on parallel data for 50+ languages and

producing 384-embedding dimensions.

3. paraphrase-mpnet-base-v2 : (768-eng) Trained on only English. The

embedding dimensions are 768.

4. paraphrase-multilingual-mpnet-base-v2 : (768-all) Multilingual ver-

sion of paraphrase-MiniLM-L12-v2, trained on parallel data for 50+ languages

including English. The embedding dimensions are 768. This includes Japanese.

5. distiluse-base-multilingual-cased-v1: (512-v1) Multilingual knowl-

edge distilled version of multilingual Universal Sentence Encoder. Supports 13

languages: Arabic, Chinese, Dutch, English, French, German, Italian, Korean,

Polish, Portuguese, Russian, Spanish, and Turkish. The embedding dimensions

are 512.

6. distiluse-base-multilingual-cased-v2: (512-v2) Multilingual knowl-

edge distilled version of multilingual Universal Sentence Encoder. This version

supports 50+ languages. The embedding dimensions are 512.

We generated two types of embeddings, one with the NLP model trained in

the English language (english embedding) and the other with the NLP model

trained on multi-lingual that includes Japanese/Spanish/French (multi-lingual em-

bedding). The final created dataset properties are shown in Table 4.8.

Table 4.9 shows the performance achieved by averaged GNN model with english-

38

Table 4.8: Test datasets created from IGB-full based on 3 different
languages.

Dataset #Nodes #Edges Emb-dim

IGB-japanese 1, 975, 296 3, 291, 665 384/512/768
IGB-spanish 1, 207, 296 1, 266, 183 384/512/768
IGB-french 841, 728 1, 688, 202 384/512/768

Table 4.9: Performance of average GNN model with different languages
showing that language doesn’t affect GNN model accuracy significantly

Model* IGB-japanese IGB-spanish IGB-french

384− eng 62.89 59.77 60.39
384− all 62.83 59.01 59.48
Average 62.86±0.03 59.39±0.38 59.94±0.46

768− eng 64.82 61.63 61.15
768− all 64.74 61.77 61.25
Average 64.78±0.04 61.70±0.07 61.20±0.05

512− v1 61.82 58.86 57.48
512− v2 61.61 58.42 57.04
Average 61.72±0.11 58.64±0.22 57.26±0.22

embedding and multi-lingual-embedding. From Table 4.92, irrespective of model

dimensions and NLP model, there is no significant performance improvement

achieved by including specific language of interest. To confirm that this isn’t a

language-dependent artifact we ran different embedding dimension models on the

French and Spanish datasets and noticed a similar trend on GCN, graphSAGE,

and GAT. We believe this is because the GNNs learn from the structure of the

graph whereas the NLP models rely on the provided text information. Because of

this unique ability, GNN models can become language agnostic and help in making

NLP models better.

4.5 Limitations In Existing Systems And Framework

IGB is the largest GNN dataset publicly available as of today. The full dataset

consumes over 1.2TB in space and due to this, many systems fail to adequately

support efficient training and inferencing. In this section, we will describe the

2We also normalized the embedding dimensions using PCA and did not notice a differ-
ence in the trend.

39

problems that we encountered while running IGB on state-of-the-art systems and

describe potential solutions to the problem.

IGB260M consists of 269+M nodes with 1K-dim embedding vectors in single

precision representation requiring more than 1TB of memory capacity in a single

node. This memory capacity requirement of IGB260M exceeds the host memory

capacity available in modern high-end data center single node-servers. This makes

the training within a node infeasible. To address this, one can memory-map the

embedding vectors and keep the embedding vectors in a fast-storage medium like

SSDs. This enables frameworks like DGL to work on embedding tables that exceed

host memory in a single node. One can enable this using Numpy [49] memory-map

abstraction.

Although the memory-map abstraction enables training or inferencing to exe-

cute on a single node, the entire execution becomes slow when compared to host-

memory execution. This is because the memory-map abstraction uses a page-fault

mechanism to generate a read request to the storage and move the embedding

vectors from storage to CPU memory and then to GPU memory. This incurs

significant overhead and overall execution time increases dramatically reducing

average GPU utilization as shown in Figure 4.93.

Figure 4.8: GPU streaming multiprocessor utilization for IGB-full.

If the model fits in the host memory as in the case of IGB-large, then the GPU

utilization is significantly improved and reached up to 80%. Here, our codebase

exploits the DGL-UVA [50, 51] techniques where the GPU can directly sample the

embedding vectors stored in the CPU memory. This helps to improve the overall

training execution time. However, there are still time periods in the training

iteration when the GPU utilization is not reaching a peak and is mainly limited

by the CPU throughput. This requires further profiling and analysis which we

leave as future work.

If the model fits in the GPU memory, as in the case of IGB-tiny, we can train the

entire model in 120 seconds and the average GPU utilization is high. This is be-

3GPU utilization is captured using nvidia-smi tool over a period of 1800 seconds with
one second sampling frequency.

40

cause embeddings tables can be directly accessed which increases the average GPU

utilization. Thus, enabling efficient embeddings gather operation is fundamental

to the performance of the GNN training algorithm. Hence, from the programmer’s

perspective, depending on the model size, the GNN model developer must make

necessary changes to the source code to ensure it fits in the respective memory

hierarchy for efficient execution. However, ideally, what GNN model developers

require is a way to efficiently execute GNN models using a single embedding loader

class for the IGB dataset that is memory-hierarchy aware and can provide the best

performance based on where the embedding vectors are. Such a system design is

beyond the scope of this thesis and leave as future work.

Furthermore, as the graph size increases, the system requires to evolve and

support efficient access to gather embedding vector from wherever it is stored, be

it in memory or storage. However, current system designs are focused exclusively

on how to improve performance while gathering data from memory. More recently,

the works like BaM [52, 53, 54] can help address this gap directly where the GPU

threads can directly read the data where it is stored. How one can integrate BaM

into frameworks like DGL while running the IGB dataset is beyond the scope of

the thesis and left as future work.

Figure 4.9: GPU streaming multiprocessor utilization for IGB-tiny.

In this thesis, we focused on single-node GNN model training. We did not

evaluate multi-node and multi-GPU training and inferencing due to the lack of

system availability and the complexity involved. We hope to address them in the

future.

4.6 IGB Dataset Model Perf Summary

In this section, we will summarize the overall results of IGB datasets across all

the GNN models and two different complex tasks as shown in Table 4.10. The

IGB-tiny and small have each been trained for 20 epochs with the 19 and 2983

class tasks using GCN, GAT, and GraphSAGE GNN models. The accuracy of

41

Table 4.10: IGB Datasets homogeneous benchmark using same model size
all the datasets (* trained for 3 epochs)

Model GCN SAGE GAT
Dataset 19 acc 2983 acc 19 acc 2983 acc 19 acc 2983 acc

IGB-tiny 68.06 53.13 71.87 59.49 68.92 51.74
IGB-small 70.46 63.28 75.49 68.70 70.93 63.70
IGB-medium* 70.63 62.70 70.35 62.55 70.06 61.81
IGB-large* 50.29 − 64.89 − 64.59 −
IGB260M* 48.59 − 54.95 − 55.51 −

the models generally sees a dip in performance in the 2983 class task due to the

additional complexity of the task where the model has to find a finer difference in

the nodes to classify them into a such large number of classes. Increasing the class

tasks from 19 to 2983 sees a drop in performance by 14.93%, 12.38%, and 17.18%

in GCN, SAGE, and GAT respectively, and 7.18%, 6.79%, and 7.23% in GCN,

SAGE and GAT respectively. Some of these accuracies drop can be recovered by

training for longer epochs. However, fundamentally, better models are required to

predict fine-class tasks.

The IGB-small dataset is the most similar in terms of size to the homogeneous

version of MAG240M [8]. In terms of performance, they also closely correlate as

both have been curated with similar input data [8]. IGB-medium and the larger

models have been trained for 3 epochs each with all three models. IGB-large and

full are currently extremely hard to train in the available hardware resources at

our disposal. We could train for three epochs with 19 out-class tasks. However,

training 2983 class tasks in a single node system requires system innovations.

42

CHAPTER 5

FUTURE WORK

This chapter discusses the next step in IGB dataset generation work.

5.1 IGB260M Availability

IGB datasets are hosted on AWS S3. We have disabled the public download

of the dataset at the moment and will be enabled in the near future after the

publication of the work is released. We are also committed to releasing parts of

raw text data that were used for generating embedding vectors along with this

release. We are currently working through the legal steps to ensure we do not

violate any policies. On completion, the IGB users will have access to the raw text

and embedding vectors. Hopefully, this enables more groundbreaking work where

we can see combined training of NLP and GNN models together.

5.2 Heterogeneous Graph Dataset

When we started the thesis, we wanted to generate the largest homogeneous and

heterogeneous GNN dataset. This thesis covered an in-depth discussion on homo-

geneous dataset generation. We are currently working to curate a heterogeneous

dataset. Our current estimate of the heterogeneous dataset will have more than

600M nodes and six billion edges with multiple relation types and nodes. We will

be providing a multiclass classification task to start with where the models require

to predict paper topics. Further tasks such as reviewer recommendation and ci-

tation recommendation that can be useful for the general community are also in

pipeline.

43

5.3 Integration With Framework DataLoaders

IGB dataset loaders are currently integrated with the DGL dataset loaded. We

are actively working to enable PyG dataset loaders. We hope to release them in

the near future.

5.4 MultiGPU And MultiNode Support

IGB-dataset has only been evaluated with single-node settings. Multi-GPU and

multi-node supports such as distributed training are not yet implemented. We are

working closely with the NVIDIA GNN tool team to enable multi-GPU and multi-

node-based distributed training frameworks. We hope to release these supports in

the near future.

5.5 Discussion

As discussed in our §4, there is a huge scope for improvements and developments

in both GNN model design and building efficient systems. We showed that labeled

dataset helps in improving the performance of GNN models but yet we must create

better GNN models to classify complex multiclass labels which is an open-ended

problem in the IGB dataset. We hope model developers try more complex tasks

provided in IGB and build better models tomorrow.

Apart from the GNN model development, the system’s community can make

an immediate impact by improving the overall training and inferencing execution

time. The IGB dataset provides a set of tools and shows the limitations in the ex-

isting systems when working on a massive scale and we hope the system community

builds solutions to them.

There is a lot of promise in the application of GNNs. For example, the IGB

dataset with the raw text can be used to fine-tune large language models and

multi-lingual models or creation of combined training tasks. IGB datasets can

serve as knowledge graphs where we can build future systems like reviewer and

citation recommendations systems. These require creating custom tasks that are

not currently defined in IGB datasets. We hope to add them in the future.

44

CHAPTER 6

CONCLUSION

Graphs are powerful data structures and the ubiquity of Graph Neural Network

applications in NLP, healthcare, social analysis, knowledge extraction, and fraud

detection makes this an important field to study. However, the scarcity of large

labeled datasets and lack of system optimizations make it challenging to develop

new GNN models. With the introduction of the IGB dataset suite for both GNN

researchers and system designers, we hope to alleviate this issue. In the pro-

cess of creating IGB dataset, we also performed several ablation study pertain-

ing to dataset creation and provided insights. IGB dataset comes with raw text

data that we believe will foster emerging intersection of both NLP and GNN re-

search topics. IGB dataset can be publicly accessed at https://github.com/

IllinoisGraphBenchmark

45

REFERENCES

[1] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems,” CoRR, vol. abs/1806.01973, 2018. [Online].
Available: http://arxiv.org/abs/1806.01973

[2] J. Wang, K. Ding, L. Hong, H. Liu, and J. Caverlee, “Next-
item recommendation with sequential hypergraphs,” in Proceedings
of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3397271.3401133 p. 1101–1110.

[3] M. Yoon, T. Gervet, B. Shi, S. Niu, Q. He, and J. Yang, “Performance-
adaptive sampling strategy towards fast and accurate graph neural
networks,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery Data Mining, ser. KDD ’21. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3447548.3467284 p. 2046–2056.

[4] W. Jin, J. Wohlwend, R. Barzilay, and T. S. Jaakkola, “Iterative
refinement graph neural network for antibody sequence-structure co-design,”
in International Conference on Learning Representations, 2022. [Online].
Available: https://openreview.net/forum?id=LI2bhrE 2A

[5] H. Stärk, O.-E. Ganea, L. Pattanaik, R. Barzilay, and T. Jaakkola,
“Equibind: Geometric deep learning for drug binding structure prediction,”
2022. [Online]. Available: https://arxiv.org/abs/2202.05146

[6] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer
networks,” 2019. [Online]. Available: https://arxiv.org/abs/1911.06455

[7] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, “Ogb-lsc:
A large-scale challenge for machine learning on graphs,” 2021. [Online].
Available: https://arxiv.org/abs/2103.09430

[8] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta,
and J. Leskovec, “Open graph benchmark: Datasets for machine
learning on graphs,” CoRR, vol. abs/2005.00687, 2020. [Online]. Available:
https://arxiv.org/abs/2005.00687

46

[9] Y. Li, J. Yin, and L. Chen, “Informative pseudo-labeling for graph neural
networks with few labels,” arXiv preprint arXiv:2201.07951, 2022.

[10] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “Gpt-gnn: Generative
pre-training of graph neural networks,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery Data Mining,
ser. KDD ’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3394486.3403237 p.
1857–1867.

[11] J. Wang, Y. Guo, X. Wen, Z. Wang, Z. Li, and M. Tang, “Improving graph-
based label propagation algorithm with group partition for fraud detection,”
Applied Intelligence, vol. 50, 10 2020.

[12] Y. Rao, X. Mi, C. Duan, X. Ren, J. Cheng, Y. Chen, H. You, Q. Gao, Z. Zeng,
and X. Wei, Know-GNN: An Explainable Knowledge-Guided Graph Neural
Network for Fraud Detection, 12 2021, pp. 159–167.

[13] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,” AI
Open, vol. 1, pp. 57–81, 2020.

[14] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang,
C. Li, and M. Sun, “Graph neural networks: A review of methods
and applications,” AI Open, vol. 1, pp. 57–81, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666651021000012

[15] W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec, “Embedding
logical queries on knowledge graphs,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc.,
2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/
ef50c335cca9f340bde656363ebd02fd-Paper.pdf

[16] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side
effects with graph convolutional networks,” Bioinformatics, vol. 34, no. 13,
pp. i457–i466, 06 2018. [Online]. Available: https://doi.org/10.1093/
bioinformatics/bty294

[17] S. Kumar, A. Mallik, A. Khetarpal, and B. Panda, “Influence maximization
in social networks using graph embedding and graph neural network,”
Information Sciences, vol. 607, pp. 1617–1636, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025522006697

[18] Z. Chen, J. Xu, C. Alippi, S. X. Ding, Y. Shardt, T. Peng, and C. Yang,
“Graph neural network-based fault diagnosis: a review,” arXiv preprint
arXiv:2111.08185, 2021.

[19] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” CoRR, vol. abs/1609.02907, 2016. [Online].
Available: http://arxiv.org/abs/1609.02907

47

[20] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” CoRR, vol. abs/1706.02216, 2017. [Online]. Available:
http://arxiv.org/abs/1706.02216

[21] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2017. [Online]. Available:
https://arxiv.org/abs/1710.10903

[22] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional networks,”
2017. [Online]. Available: https://arxiv.org/abs/1703.06103

[23] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph transformer,”
in Proceedings of The Web Conference 2020, 2020, pp. 2704–2710.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” 2019. [Online]. Available: https://arxiv.org/abs/1912.01703

[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” 2016. [Online].
Available: https://arxiv.org/abs/1603.04467

[26] M. Y. Wang, “Deep graph library: towards efficient and scalable deep
learning on graphs,” ICLR Workshop on Representation Learning on Graphs
and Manifolds. [Online]. Available: https://par.nsf.gov/biblio/10311680

[27] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch
geometric,” 2019. [Online]. Available: https://arxiv.org/abs/1903.02428

[28] Y. Ma, X. Liu, N. Shah, and J. Tang, “Is homophily a necessity for graph
neural networks?” 2021. [Online]. Available: https://arxiv.org/abs/2106.
06134

[29] H. Pei, B. Wei, K. C. Chang, Y. Lei, and B. Yang, “Geom-gcn: Geometric
graph convolutional networks,” CoRR, vol. abs/2002.05287, 2020. [Online].
Available: https://arxiv.org/abs/2002.05287

[30] Z.-A. Shen, T. Luo, Y.-K. Zhou, H. Yu, and P.-F. Du, “NPI-GNN: Predicting
ncRNA–protein interactions with deep graph neural networks,” Briefings
in Bioinformatics, vol. 22, no. 5, 04 2021, bbab051. [Online]. Available:
https://doi.org/10.1093/bib/bbab051

48

[31] C. L. Giles, K. D. Bollacker, and S. Lawrence, “Citeseer: An
automatic citation indexing system,” in Proceedings of the Third
ACM Conference on Digital Libraries, ser. DL ’98. New York, NY,
USA: Association for Computing Machinery, 1998. [Online]. Available:
https://doi.org/10.1145/276675.276685 p. 89–98.

[32] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine, vol. 29, no. 3,
pp. 93–106, 2008.

[33] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
collection,” http://snap.stanford.edu/data, June 2014.

[34] K. Lo, L. L. Wang, M. Neumann, R. Kinney, and D. S. Weld, “S2orc: The se-
mantic scholar open research corpus,” arXiv preprint arXiv:1911.02782, 2019.

[35] A. D. Wade, “The semantic scholar academic graph (s2ag),” in Companion
Proceedings of the Web Conference 2022, 2022, pp. 739–739.

[36] S. Fricke, “Semantic scholar,” Journal of the Medical Library Association:
JMLA, vol. 106, no. 1, p. 145, 2018.

[37] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis, M. Hender-
son, Y. Hu, and R. Sandstrom, “The suitesparse matrix collection website
interface,” Journal of Open Source Software, vol. 4, no. 35, p. 1244, 2019.

[38] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” CoRR, vol. abs/1908.10084, 2019. [Online].
Available: http://arxiv.org/abs/1908.10084

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” 2018. [Online].
Available: https://arxiv.org/abs/1810.04805

[40] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized bert pretraining approach,” 2019. [Online]. Available: https:
//arxiv.org/abs/1907.11692

[41] A. Cohan, S. Feldman, I. Beltagy, D. Downey, and D. S. Weld,
“Specter: Document-level representation learning using citation-informed
transformers,” 2020. [Online]. Available: https://arxiv.org/abs/2004.07180

[42] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model for
scientific text,” 2019. [Online]. Available: https://arxiv.org/abs/1903.10676

[43] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online].
Available: http://jmlr.org/papers/v9/vandermaaten08a.html

49

[44] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Huggingface’s transformers:
State-of-the-art natural language processing,” 2019. [Online]. Available:
https://arxiv.org/abs/1910.03771

[45] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[46] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in python: Main
developments and technology trends in data science, machine learning, and
artificial intelligence,” arXiv preprint arXiv:2002.04803, 2020.

[47] A. Khatua, V. S. Mailthody, and W.-m. Hwu, “IGB260M - Massive
Homogeneous Graph Dataset.” [Online]. Available: https://github.com/
IllinoisGraphBenchmark/IGB260M-Datasets

[48] P. Budzianowski and I. Vulić, “Hello, it’s gpt-2 – how can i help you?
towards the use of pretrained language models for task-oriented dialogue
systems,” 2019. [Online]. Available: https://arxiv.org/abs/1907.05774

[49] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array
programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, sep
2020. [Online]. Available: https://doi.org/10.1038%2Fs41586-020-2649-2

[50] S. W. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi, and W.-m.
Hwu, “Emogi: Efficient memory-access for out-of-memory graph-traversal in
gpus,” 2020. [Online]. Available: https://arxiv.org/abs/2006.06890

[51] S. W. Min, K. Wu, S. Huang, M. Hidayetoğlu, J. Xiong, E. Ebrahimi,
D. Chen, and W.-m. Hwu, “Pytorch-direct: Enabling gpu centric data access
for very large graph neural network training with irregular accesses,” 2021.
[Online]. Available: https://arxiv.org/abs/2101.07956

[52] Z. Qureshi, V. S. Mailthody, I. Gelado, S. W. Min, A. Masood, J. Park,
J. Xiong, C. Newburn, D. Vainbrand, I.-H. Chung, M. Garland, W. Dally,
and W.-m. Hwu, “GPU-Orchestrated On-Demand High-Throughput Storage
Access in the System Architecture(FULL DETAILED VERSION).” arXiv,
2022. [Online]. Available: https://arxiv.org/abs/2203.04910

[53] V. S. Mailthody, “Application support and adaptation for high-throughput
accelerator orchestrated fine-grain storage access,” Ph.D. dissertation, Uni-
versity of Illinois Urbana-Champaign, 2022.

50

[54] Z. Qureshi, “Infrastructure to enable and exploit gpu orchestrated high-
throughput storage access on gpus,” Ph.D. dissertation, University of Illinois
Urbana-Champaign, 2022.

51

