Analysis of the Continued Fraction Digits of π

Alex Jin, Arpandeep Khatua, Xiaotong Li, Shreyas Singh, Zhuo Zhang
Mentors: Prof. A.J. Hildebrand, Efstathios Konstantinos Chrontsios Garitsis Illinois Geometry Lab, University of Illinois at Urbana-Champaign

Background on Continued Fractions

Continued Fraction Expansions

- A continued fraction is the representation of a real number x in the form

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}}=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]
$$

- Continued fraction expansions of irrational numbers are infinite, while rational numbers have terminating expansions
- Continued fraction expansion of π :
$\pi=3+\frac{1}{7+\frac{1}{15+\underline{1}}}=[3,7,15,1,292,1,1,1,2, \ldots]$
Conjecture: The continued fraction digits of π behave like those of a random number $x \in[0,1]$, i.e., they follow the Gauss-Kuzmin Distribution, defined on the right.

Statistics of Continued Fraction Digits

Theorem (Gauss-Kuzmin): For almost all real num bers x, the frequency of the digit k in the continued fraction expansion of x is given by

$$
\mathbb{P}(k)=\log _{2}\left(1+\frac{1}{k(k+2)}\right)
$$

Block Frequencies in Continued Fraction Digits

Theoretical Frequencies of Blocks of 1 s
Theorem: For almost all real numbers x, the frequency of block of k consecutive 1 s in the continued fraction expansion of x is

$$
P(\underbrace{1,1, \cdots, 1}_{k \text { terms }})=\left|\log _{2}\left(1+\frac{(-1)^{k}}{F_{k+2}^{2}}\right)\right|,
$$

where F_{k} is the k-th Fibonacci number.

Observed Frequencies in the first $300,000,000$ CF Digits of π

References

- F. Artacho et al. "Walking on real numbers." Math Intelligencer 35.1 (2013): 42-60.
- J. Borwein, A. van der Poorten, J. Shallit, and W. Zudilin. Neverending fractions, volume 23 of Australian Mathematical Society Lecture Series.
- A. Ya. Khinchin. Continued fractions. University of Chicago Press, Chicago, Ill.-London, 1964.

Statistics of Continued Fraction Digits of π

Predicted vs. Actual Digit Counts in the first $30,113,021,586$ CF Digits of π

Digit	Predicted Count	Actual Count
1	$12,498,033,174.78$	$12,497,961,253$
2	$5,116,955,236.43$	$5,117,043,707$
3	$2,803,805,504.30$	$2,803,765,779$
4	$1,773,466,929.75$	$1,773,427,556$
5	$1,223,852,956.47$	$1,223,886,469$

Digit	Predicted Count	Actual Count
6	$895,782,393.75$	$895,746,719$
7	$684,170,154.08$	$684,156,432$
8	$539,682,802.38$	$539,714,866$
9	$436,625,855.22$	$436,649,221$
10	$360,532,416.93$	$360,545,777$

Random Walks based on Continued Fraction Digits of π

Walk based on the first 10,000 CF Digits $\bmod 4$ of π vs. randomly generated walk

Random walk statistics based on the first 1,000 blocks of $1,000,000$ CF Digits of π

Statistic	π walk	Random walk
Avg. \# of sites visited	$147,905.047$	$146,080.107$
Std. Dev.	$11,587.097$	$11,719.355$
Avg. Distance to Origin	492.538	499.590
Std. Dev.	202.048	206.720

