ANALYSIS OF THE CONTINUED FRACTION DIGITS OF π

ALEX JIN, ARPANDEEP KHATUA, XIAOTONG LI, SHREYAS SINGH, ZHUO ZHANG MENTORS: PROF. A.J. HILDEBRAND, EFSTATHIOS KONSTANTINOS CHRONTSIOS GARITSIS ILLINOIS GEOMETRY LAB, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

BACKGROUND ON CONTINUED FRACTIONS

Continued Fraction Expansions

• A **continued fraction** is the representation of a real number *x* in the form

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots}}} = [a_0; a_1, a_2, a_3, \dots]$$

- Continued fraction expansions of irrational numbers are infinite, while rational numbers have terminating expansions.
- Continued fraction expansion of π :

$$\pi = \mathbf{3} + \frac{1}{7 + \frac{1}{15 + \frac{1}{\dots}}} = [3, 7, 15, 1, 292, 1, 1, 1, 2, \dots]$$

Conjecture: The continued fraction digits of π behave like those of a random number $x \in [0, 1]$, i.e., they follow the Gauss-Kuzmin Distribution, defined on the right.

$$\mathbb{P}(k) =$$

BLOCK FREQUENCIES IN CONTINUED FRACTION DIGITS

Theoretical Frequencies of Blocks of 1s

Theorem: For almost all real numbers *x*, the frequency of block of *k* consecutive 1s in the continued fraction expansion of x is

$$P(\underbrace{1,1,\cdots,1}_{k \text{ terms}}) = \left| \log_2 \left(1 + \frac{(-1)^k}{F_{k+2}^2} \right) \right|,$$

where F_k is the *k*-th Fibonacci number.

REFERENCES

- F. Artacho et al. "Walking on real numbers." Math Intelligencer 35.1 (2013): 42–60.
- J. Borwein, A. van der Poorten, J. Shallit, and W. Zudilin. Neverending fractions, volume 23 of Australian Mathematical Society Lecture Series.
- A. Ya. Khinchin. *Continued fractions*. University of Chicago Press, Chicago, Ill.-London, 1964.

STATISTICS OF CONTINUED FRACTION DIGITS OF π

Digit	Predicted Count	Actual Count	Digit	Predicted Count	Actual Count
1	12,498,033,174.78	12,497,961,253	6	895,782,393.75	895,746,719
2	5,116,955,236.43	5,117,043,707	7	684,170,154.08	684,156,432
3	2,803,805,504.30	2,803,765,779	8	539,682,802.38	539,714,866
4	1,773,466,929.75	1,773,427,556	9	436,625,855.22	436,649,221
5	1,223,852,956.47	1,223,886,469	10	360,532,416.93	360,545,777

RANDOM WALKS BASED ON CONTINUED FRACTION DIGITS OF π

Walk based on the first 10,000 CF Digits mod 4 of π vs. randomly generated walk

Predicted vs. Actual Digit Counts in the first 30,113,021,586 CF Digits of π

Random walk statistics based on the first 1,000 blocks of 1,000,000 CF Digits of π

Statistic	π walk	Random walk
Avg. # of sites visited	147,905.047	146,080.107
Std. Dev.	11,587.097	11,719.355
Avg. Distance to Origin	492.538	499.590
Std. Dev.	202.048	206.720